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ABSTRACT

Let m items be put on test at the outset, and suppose an item is not
replaced upon failure. Assume an exponential failure distribution
Fe (t) =1-exp(-t/6). A time truncated sequential procedure for testing
llo: (-] 200 versus lllz 0< 01 is developed. This procedure allows a quick
rejection of “0 wvhen ﬂl is true, but provides an accurate interval estimate

of 6 when !lo is accepted after the test has been established.

AMS Subject Classification: Primary 62L10

Key Words and Phrases: Time truncation; Gaussian process; Wiener weasure;

Weak convergence; Stopping rule; Confidence interval;
Average sampling time.
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1. INTRODUCTION {

In the quality control of industrial production, it is a common practice

to test hypotheses to make a decision about acceptance or rejection of a pro-

i g duction batch. Generally, a sequential testing procedure requires less data
to reach a decision than a fixed sample or fixed time testing procedure. Also,
in many situations, the experimenter may want to obtain a point or an interval

estimate of some parameter after a test of hypothesis has been established.

(for example, see Siegmund (1977,1978)).
In this paper, we will consider a commonly used life testing procedure
in industrial settings. Let m items be independently put on test at the out-

f“ set, and when an item fails, it is not replaced. Suppose that the failure

time is exponentially distributed with distribution function Fe(t)-

l-exp(-t/6), t20. The hypotheses which are to be tested are

(1.1) Ho: 026, versus H,: 6 sel, where 6,< 6,..

0 1 1 0

e

We assume that for certain reasons this life test must be terminated at
time t, if not all of the items have failed by t. (This type of censor-
ship is often called Type I censoring.) The time to can be preassigned
or determined by the specified probabilities a and B for testing (1.1).

The maximum likelihood estimator of 6 under the above type of censor-

ship with censoring time t(Sto) was given by Bartlett (1953) as

N, (t) j

: 1'{.1 U+ (=N (£))e

Q-(t) - |
N, (t)

where N‘(t) denotes the number of failures at or before time t and the




Ui" denote the observed failure times in increasing order. For convenience,
let us define 8_(:) = {f N.(t) = 0. Bartholomew (1963) obtained the con-
ditional probability that ;-(t) 2 ¢ given N-(t) > 0, when ¢ > 0. Yang and
Sirvanci (1977) showed that the estimator 6.(t) is consistent and, when
properly standardized, is asymptotically normal for each fixed t s to.
Recently, Spurrier and Wei (1979) have used 6.(t°) as the test statistic

for testing (1.1) and demonstrated certain advantages over Epstein's procedure
(1954) and the pure sequential probability ratio test given in Ghosh (1970,
PP. 193-96). Note that Spurrier and Wei's test is a test based on the fixed
length of time to.
In this article, a one-sided sequential test procedure based on the

random function 0‘ is presented for testing (1.1). This procedure allows

a quick rejection of “0 when d; is true, but provides an accurate interval 3

estimator of 6 when “0 is accepted. Siegmund (1977) studied the same problem

for different experimental settings. In Section 2, we prove that the i
standardized process 9' converges in distribution to a Gaussian process as
m + », The large sample approximation of the power function and the average
sampling time (AST) are presented in Sections 3 and 4, respectively. An i
interval estimate of 6 after testing is given in Section 5. A simple
example is provided for illustration purposes in Section 6.
2. LARGE SAMPLE APPROXIMATION OF en BY A
GAUSSIAN PROCESS
To test the hypotheais (1.1), we define the following stopping rule:

Let T be the smallest value of t such that Ou(t) < a’ Given to. stop

testing at -1n(to,T) and reject "0 if and only 1f T s to:

e N R —
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We now prove that the distribution of the standardized 0‘ converges

weakly to a Gaussian measure.

Theorem 1. Consider 0-(t) to be a function of t ¢ (O.tol. Then
n (0- - 8) converges in distribution to a Gaussian process Y as m + =,

where EY(t) = O and cov(Y(s),Y(t)) = Ozlro(ux(l.t)). s,t € (O.tol.

Proof. The total time on test at time t is given by
N-(t)
va(t) = I U + (m-N_(t))e.
i=1
First, we prove that the random element C- = -"’(w-eu_) in D[O.tol con-

verges in distribution to a Gaussian process Z with EZ(t) = 0 and

cov(Z(s),2(t)) = 02 FG(-in(a.t)) as m » », wvhere s,t¢ [O.tol. (See

Billingsley (1968) for notation.)
Let 0 < 'l < '2
Algo, let xl.xz.....x_ be the hypothetical data from the exponential

. P - aks to. where k is an arbitrary positive integer.

distribution with mean 6. Note that because of the time truncation to not

every X can be observed. Define

P.o.
H‘ (x‘ (s M))I[ll

+ (a,-8, ,)-(s,-s, )1 s
] 3-1 ] 13-l 1 73-177(x, < ]

$x1<. 3-1

b

where I[_] denotes the indicator function, i=1,...,n, and j=1,...,k.

It can be shown that mf” =0, of = var(\i:n) = ozFO(ll). o: - nr(ﬂ{”)

- oz(Fo(u )-Fe(nj_l)). j¢1, and l(\i:‘)uil')) =0, £ ¢ £'. By the Central

] n

Limit Theorem, the k-dimensional random vector -"’ z g‘ converges in
i=1

distribution to a multivariate normal random vector with mean 0 and

covariance matrix { as m + =, where w - ("{1)“”."?&)). and ¢

- dia;(o:.o g. oo .o:) , 'denoting matrix transpose.

e




b m
Lee vi? . § ¥ ui‘) =y (s) - ON (s) and y_= (vil’.....v:k>)'.

" felgml i i
Y

Then w y‘ converges in distribution to s multivariate normal random vector

with mean 0 and covariance matrix tl - (.ij)klk as m+ o, vhere
62 F (s
a, - 8

3
1) 2
8% Fo(s)) , 321,33 =1,....k

) » 3 s i

Let Osr

1

Y
<rc rzs to. Then c-(r) - Cn(rl) - n-l’ 2 Yy and
i=]1

+ (r-r,)

a5 2o
C'(l‘z) i En(r) Gt Z ’1' Vhere w " (xi i (M))Ifrlsxi<r] 1

i=1

.(r«-rl)I[xi< r1] and 01 = (xi- (t2 + 6))I|:rsx ¥ rzl + (rz—r) - (1'2-1')1[’(1 el

i
It is straightforward to show that E'r:l - 501 = 0, E'i‘:l = 0,
var 1, = Oz(exp(-rlle)—cxp(-r/elx vary, = Gz(cxp(-rle)-cxp(-tzle)). and
Etioi - (2-:1)202(-xp(-z/o>-.xp(-r2/e)). now,
ECGE_(r)=€_(r,)2(_(r.)=€_(r))2] = n 2E[( f )3 f 404
m n 1l m 2° "m =1 i jm1 J

- n'lg[ti.ij + n‘l(-l)n[tfogl

- n-l(r-tl)zez(m(-r/O)-cxp(-rzle)) + n-l(n-l)v.t T, vard,

< n-l(rz-rl)zoz(GXP(-tlle)-exp(-rzle)) + I-l(n~1)(exp(-r1/0)
-cxp(-rzle) )2 el'

< 0'T(ry-r)%/6% + (exp(-r,/0)-exp(-r,/00)%]
s 6" (xy/0-1,/0) + (exp(-r,/0)~exp(-r,/0))1’
= 0°L(Ry(r)41,/0) = (Fy(x))4r,/0)12,

Thus, by Theorem 15.6 of Billingsley (1968), the random element tn
converges in d”stribution to a Gaussian process Z with EZ(t) = O and

cov(Z(s),2(t)) 0210 (min(s,t)) as m + =, Since the random element nN;l converges

in probability to a constant function llt-’o in D(O.tol. by Theorem 4.4 and

-




Corollary 1 of Theorem 5.1 of Billingsley (1968), the random element

lﬂ;lc. - -5(0_ - 0) converges in distribution to a Gaussian process Y

with EY(t) = O and cov(Y(s),Y(t)) = ozli‘e(nx(l.t)) s w1

Theorem 1 will be used to obtain the approximate power function

for the test of (1.1) for large m in the next section, to calculate

the average sampling time in Section 4, and to obtain interval estimates
of 6 after testing in Section 5. First, a standard kind of time

transformation for the process Z in the proof of Theorem 1 is needed.

This is stated in Lemma 1 for future reference.

s oo

Lemma 1. Let Z be a Gaussian process with EZ(t) = C and cov(Z(s),2(t))
- Ozre(nin(s.t)), s, t € (O,tp]. Also, let p(s) = Z(Fgl(:))/e. where F;I
is the inverse function of Fe, 8 ¢ (O.Fe(to)]. Then p(s) is a standardized

B s Wiener process.

3. ASYMPTOTIC APPROXIMATION OF POWER FUNCTION

Since Nn(O) = 0, by our convention in Section 1, 0-(0) is defined
to be =. Also, Fe(O) = 0. Therefore, we define Z(0) = b, where b is an
arbitrary positive number which can be determined from the specified error

probabilities a and 8 as a result of Theorem 2.
§ Theorem 2. When m is large,

Po(aceopt Ho) - Pe(T>'t°)-

.("'cu'_:f)'o(‘o))_“p(h;:’”’) 0(_ c;(e)re(:o)-o»b ) .
e(ro(:o))" / O(Fa(to))




Y

where c;(e) -m (cIll - 0) and ¢ is the distribution function of the standard

normal distribution.

Proof. By Theorem 1, we have for the Gaussian process Z of Lemma 1,
R L '

Pe(nccept H ) Pe(m (en(t) -0) > cn(o). for all t € [O.to])

a4 ?S?%T > c;(e). for all t ¢ [O.to]) which by Lemma 1 becomes

Pe (_Rﬁﬂl > c;(e) , for all s € [O.Fe(to)])

= Pe(p(s) > c;(e)ela, for all s ¢ [O.Fe(to)])

b-c;(e)s
-]

b-c (8)F, (t() 2c:(8)b ¢! (8)Fy (t )+ b
=0 ( ', -exp( 2 ¢ - '————r .
o(F (to)) ) e(!-‘e(to))

where the last equality is obtained from an application of the results on

- Po(p(a) < , for all s € [O.Fe(to)])

page 348 of Shepp (1966). ///
Therefore, in order to determine the constants n and b required for
testing (1.1) with the specified error probabilities a and B, we must solve

the following two nonlinear equations:
L]
b-c) (8,)F, (t,) b+c  (8,)Fy (t))

0 2 %
s eo(Feo(tOD" ) Y eo(Feo(to))"
3.1) «] «a,
; b-cQ (8,07 (£g) SR O breg 8, )Fy (t) o
el(rel(to;)T - oy (Fy (tg))"

A solution to (3.1) may be easily found by numerical analysis techniques.

An example is given in Section 6.




4. ASYMPTOTIC APPROXIMATION OF DISTRIBUTION OF T

The approximate distribution of the time T for large m may be readily
obtained from the results of Sections 2 and 3. The distribution function

of T is given in Theorem 3.

Theorem 3. When m is large,

c'(8)F,(t) ~b/e 2¢'(8)b -c'(8)F, (t)-b/e
Gg(t) = P (Tst) = o( o - T )+exp(__"'_z__.) 0(_-___9_&___ :
. (Fy () 8 (Fy (£))

where t > 0.

Proof. From Theorem 1, Lemma 2, and equation (17.1) of Shepp (1966),

P(TSE) =1 - P (T>t) =1 - Pe(/;(am(u)~6) >¢!(8) for all uel0,t])

g - pe(-:f(l‘% > c;(e), for all ue [0,t])

pe(—e—‘éﬁ > c1(8), for all v € [0,F, (£)])

]
[
|

¢ b-c'(e)v
i =1-P,(pv) <—l‘3—— » for all ve[0,F (t)])

e (b—c;(e)re(t)) (zc;(a)b ( ¢! (8)F, (£)+b o
: -exp i i 0 e .
e(pe(:))'; o2 e(re(:));

SR S

Note that T may not be a proper random variable, i.e. Pe (T = «) can
be positive. When c;(e) >0, Ge (t) is very similar to the inverse
Gaussian distribution function (Shuster (1968)).

The average sampling time (AST) for our sequential testing procedure

is given by




t
0
(4.1) {) the(t) + :0(1 - ce(to)).

The integral in (4.1) cannot be obtained in closed form, but 1is easily

integrated computationally by the Gaussian or other quadratures.
5. THE INTERVAL ESTIMATION OF 6 AFTER TESTING

For the completeness of this paper, we utilize Siegmund's (1978) method
of obtaining a confidence interval of a parameter & for an arbitrary parent
distribution after a test of hypothesis of 8 has been established. First,
points on the stopping boundary are ordered in a counterclockwise direction.
Then a lower (1 - y) confidence bound for 6 is the smallest value of 6
which gives probability at least y to the event that the test terminates at
a boundary point at least as {arge as that actually observed in the ordering.
An upper confidence bound is defined similarly.

For our situation, an interval estimate of 6 when Ho is accepted is much
more desirable in practice than whén “1 is accepted. When Hl is accepted, further
development and testing will be necessary so that it is more important to
reach a rejection decision as soon as possible than to give an accurate
estimate of 6. The following theorem gives a (1 - 2y) confidence interval

for 6 after Ho is accepted. The proof of this theorem is straightforward.

Theorem 4. When H, is accepted, let the observed value of om(to) be d.

Then a lower (1 - y) confidence bound is given by

(5.1)  8(d) = dnf {0: P (T 2 t; and 6 (tg) 2 d)2y) ;

and an upper (1 - y) confidence bound is given by




T T

(5.2) 8(d) = supfe: [PG(T< ty) + PO(TZ t., and am(to) <d)]z2y}.

0

Finding the upper and lower bounds for & involves computing the three

probabilities in (5.1) and (5.2). Since Pe('rz t, and 8m(t0) 2d)

0

- Pe(e‘(:o) 2d) - Pe (T < to and Bn(to) 2d) and Pe (T2t,. and em(to) <d)

0
= Pe (e.(:o) <d) - Pe (T< to) + I’e (T< t, and Bm(to) 2d),the only quantity
vhich we are unable to compute for large m from results in the previous

sections is Pe (T< t and em(:o) 2d). The following corollary to previous

results gives an approximate expression for this probability.

Corollary 1. When m is large,

. t c'(8)F,(t)-d'(8)F. (t.)+b
Pe('r<t0 and en(to)a d)-] 0 0( L - L e% 0 )g(t)dt,
0 e(Fe(to)—Fe(t) )

where di'. (e)-m!’(d-e),g(t) = d—g‘%&l. G is defined in Theorem 3, and b is defined

in Section 2.
Proof. Write P, (en(to) 2d and T< to) T (em(to) 2d|T< to)Pe (T< to)
= {E P (8 () 2d|T,T< tg)} Py (T< ty)
t, 2
- {) B, (8, (ty) 2d|T=1¢, t< ty)8(t)de.
Now, letting s = Fe (t), and s = Fe (to). we obtain

Oo(so)

Pe(en(to) 2d | T=t,t< to) ol /% T—

2d'(6) | 6p(s) = sc'(8))
m m
= Py (p(sy) 28,dp (8)/8 | o(s) = c!(8)s/0)

= Py(p(s,-8) 2 (s,d: ()~ (8)s)/6 | p(0)=b/o)
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- pe(p(so—s)z(sodl;(e)-c‘;(e)s-b)/e | 0(0) = 0)

a 0(b~sod!;(6)+cl;(e)s
efso-s

where we have used the stationary increments property of p(s). ///
The integral in Corollary 1 can be easily computed by numerical
integration procedures in practice, thus giving approximate values for

(5.1) and (5.2) for large m.
6. AN EXAMPLE

In this section, we give a simple example of computing the initial
value cm.b, and the AST for illustration purposes. We let m = 100,

eo = 1.5, 01
a= Pe (reject Ho) and 8 = Pe (reject Hl)' the pair of nonlinear equations

(0] 1
in (3.1) are solved. If to is preassigned to = 2,079 such that Feo(to) = .75,

= 1.0, a = .05, and 8 = .,1. To attain given values

then & " 1.2469 and b = 1.2436. We also report the test based on ém(t*)
for a fixed length of time t* (Spurrier and Wei (1979)) for comparison
purposes. For the same a and B values, t* = 1.0942. Table 1 gives the
average sampling times (AST) of our sequential testing procedure for several
6 values, computed by the 24-point Gaussian quadrature formulas. Under

the alternative hypothesis, the AST's are considerably smaller than t¥

for the fixed time test. Under Ho, the AST is larger than t*. However,
this is actually an advantage because we would like to have an accurate

estimate of 6 when HO is accepted.




11

Table 1. THE AVERAGE SAMPLING TIME

to " 2.079 , t* = 1,09
0 0.2 0.4 0.6 0.8 1.0 1.5
AST 0.017 0.060 0.129 0.269 0.779 2.009
7. REMARKS

In practice, we perform the sequential procedure proposed in this
article by computing 6m(t) periodically with small increments of time. By
doing this our test can be treated as an approximation to repeated significance
teats with fixed length of time.

When to is not predetermined by the experimenter, a value of to can

be obtained which is optimal in some sense. For example, to may be chosen

to minimize the AST when 0 =6, subject to constraints (3.1).

0
If our purpose were to obtain a deciaion as *soon as possible without
regard to estimation, then other sequential tests based on em could be

constructed to meet this requirement.
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